
(c) 2016 – 2022 Marnix van den Bos 1

XVAN 2.6
-- IFI-XVAN --

-- everything is a location, an object or a timer --

(c) 2016 – 2022 Marnix van den Bos 2

Table of Contents

Introduction ... 3

About IFI-XVAN… ... 3

Functional .. 3

Technical .. 5

How do I “ifify” my XVAN story? ... 7

Compatibilty .. 9

Where to get IFI Xvan .. 9

Using the IFI Library in your story ... 9

(c) 2016 – 2022 Marnix van den Bos 3

Introduction
This document describes IFI-XVAN, the XVAN version with a Graphical User Interface (GUI). This

document does not go into the “normal” operations of XVAN, these are all described in the following

XVAN documentation:

 XVAN Installation and user guide;

 XVAN Introduction;

 XVAN Functions;

 XVAN Syntax;

 XVAN Tutorial;

 XVAN Library.

This document focuses on the extra functionality offered by IFI-XVAN.

About IFI-XVAN…
As described in the XVAN Introduction document, XVAN is a text adventure authoring system. It is a

compiler, an interpreter and an authoring language.

IFI-XVAN comes with a special version of the interpreter that does not directly interact with the user.

Instead, it connects to a Graphical User Interface (GUI) and the user interacts with the GUI. The GUI

is called the front-end and the interpreter is called the back-end.

IFI-XVAN has the same compiler and authoring language1 as “normal” XVAN.

Functional
When compared to the console and Glk versions, IFI-XVAN has additional graphical capabilities, e.g.

 Graphical display of the map;

 Display background pictures for locations;

 Display the player’s inventory as icons;

 Display the player’s current location;

 Clickable compass rose to move around;

 Clickable object names with predefined actions in the printed text.

 …

1
 With a few additions

(c) 2016 – 2022 Marnix van den Bos 4

Communication between interpreter back end and GUI is done through added XVAN functions. The

author needs not to worry about this when they use the IFI Library. The IFI-library has normal XVAN

code that handles the communication with the GUI. The IFI Library requires that the XVAN Library be

used as well.

But the story author also has the option to communicate with the GUI directly by using the newly

added XVAN functions, as described in the technical paragraph in this document.

Story info

The story info section in the story source file now allows the author to set some initial values for the

GUI, like background color, enabling autolinks, enabling compass, etc

Following keywords are available (if they are not in the story file, default values are used):

Keyword Purpose Default Remark

title Story title “”

author Story author “”

organization Producing organization “”

covertext Text on first screen “”

credits credits “”

(c) 2016 – 2022 Marnix van den Bos 5

choice_mode Story runs in choice mode --

hybrid_mode Story runs in hybrid mode --

version Story version “1.0.0” Format is “x.y.z”

Android
market

Link to android app “”

Ios market Link to ios app “”

backimage Path to background image
for map

“” Path is relative to datadir

effect

no_sidebar Hide the sidebar in the GUI -- If omitted, a sidebar will be
displayed in the GUI.

no_textinput No textinput possible, only
(mouse) clicks

-- If omitted, the GUI will allow
textinput.

no_compass Hide the compass in the
GUI.

-- If omitted, a compass will be
displayed in the GUI.

primary_color Background color

autolink If true, the front-end will try
to map nouns to objects
and make them clickable.

-- XVAN sends clickable nouns
by itself, so the autolink
feature needs not to be used.

Technical
Note: in case you’re not interested in how ifi works “under the hood”, you may skip this section. It is

not necessary knowledge for using IFI-XVAN functionality.

Front-end

The GUI used in IFI-XVAN is the Brahman GUI developed by Strandgames. This GUI has an open

interface whose specs are here.

 The GUI is not specifically for XVAN, any back-end can connect to it, provided it abides by the

interface rules.

Back-end

The IFI-XVAN back-end is formed by an adapted version of the XVAN console interpreter. It no longer

has a console or Glk window, but it receives its input from and sends its output to the GUI. The back-

end is no longer an executable, but a shared library (.so for linux or .dll for windows).

Communication between back-end and front-end

The back-end and front-end exchange information via JSON text strings. JSON is an international

standard, for more information check www.json.org. The GUI interface specs mentioned above

define the syntax and semantics of the messages exchanged between front-end and back-end.

Examples:

http://www.strandgames.com/
https://gitlab.com/strandgames/brahman/blob/master/ifi/ifi.md
http://www.json.org/

(c) 2016 – 2022 Marnix van den Bos 6

When the user types “unlock the chest with the key” in the GUI, the GUI will send the following JSON

message to the back-end: ,“command” : “unlock the chest with the key”-. The “command” part tells

the back-end that it should handle the upcoming string as user input.

After executing the user command, the back-end will send a reply JSON to the GUI. In our example

this could be for example: ,“text” : “The chest is now unlocked.”-. The “text” part tells the GUI that it

must print this text in the text pane.

Besides the command and text, there are a lot of other messages that can be exchanged. E.g. there

are messages for:

 Sending the player’s inventory to the GUI for display as icons;

 Sending map data to the GUI so it can draw the map;

 Sending the player’s current location to the GUI to highlight on the map;

 Sending possible exits for the current location so the GUI can draw a clickable compass;

 Etc, etc.

Communicating directly with the GUI from within an XVAN story

There are 3 XVAN-functions available to communicate directly to the GUI:

 Clearjson()

 Addjson()

 Sendjson()

The clearjson() and sendjson() functions have no parameters, the addjson() functions has the

following parameters (table copied from XVAN functions document).

addjson() Parameter 1 Parameter 2 Parameter 3 remarks

 string location
object

-- parameter 2 is
optional

The IFI_XVAN interpreter maintains an internal json string that can be manipulated by these three

functions:

Clearjson() clears the internal json string.

Addjson() adds the string parameter as text to the internal json string. In case a location or object is

specified as the second parameter, it’s id number is added as text to the json string (e.g. id 4503 is

added as 4 ASCII characters ‘4’, ‘5’, ‘0’ and ‘3’).

Sendjson() sends the internal json string to the GUI, but does not clear it afterwards.

Note: when using these functions, the author must have an understanding of the json format. Strings

that do not comply with the json standard will be ignored by the GUI and it will not send an error

message.

The ifi-actions in the IFI Library also use these functions. As an example, let’s have a look at the ifi_loc

verb. Ifi_loc sends the player’s current location to the GUI, so it can be highlighted on the map:

(c) 2016 – 2022 Marnix van den Bos 7

$VERB ifi_loc

 DEFAULT

 clearjson() # just to make sure it’s empty

 addjson("{\"location\":", l_location) # \” prints a “ in the string

 addjson("}")

 sendjson()

 clearjson() # as a courtesy to the next caller

ENDVERB

Basically, this verb builds the string ,“location”:location_id- and sends it to the GUI.

There are much more complicated ifi-actions. For example the verb ifi_items makes all objects held

by the player work together to create 1 json string.

How do I “ifify” my XVAN story?
With the IFI Library, it’s easy to enable your story for IFI-XVAN. With following steps you can take

advantage of the additional GUI capabilities:

1. In descriptive text use [o_names] rather than plain nouns. E.g don’t print:

“There is an old chest here.”

but instead print:

“There is *a+ *o_chest+ here.”

Why? The second line prints the description of the chest and adds markup to it, which makes it

clickable on the screen. When clicked, the GUI sends the command “use <object>” to the back-

end.

The XVAN Library (which is required when using the IFI Library) has a default ‘use’ verb that:

- examines the object if it was not examined before, or

- tries to take the object if it is already examined and it is takeable.

But of course, you can define an objects own response to the use command. E.g for a lamp, there

may be a local trigger t_use connected to “use lamp” that will turn on or off the lamp, depending

on its state.

Secondly, you may drag an item from the sidebar and drop it on an item in the text, e.g. drop the

key item on the chest hyperlink. This will send the command use key with chest to the back-end.

XVAN Library default actions for use X with Y (depending on context) are:

- ask Y about X (if both X and Y are alive)

- give Y to X (if X is alive)

- unlock Y with X (if X is a key and Y is locked)

- put X in Y (if Y is a container)

- put X on Y in all other cases.

2. Make sure to use the following directions in the story and make sure they are known by these

names (synonyms with other names are allowed):

(c) 2016 – 2022 Marnix van den Bos 8

N, NE, E, SE ,S , SW, W, NW, Up, Down, In, Out.

3. Use attribute r_ifi_picture for background pictures for locations. The background picture will be

displayed when the player is in the location. Create a (local) description with a text string that

holds the path name to the picture and assign that description to r_ifi_picture. In case there are

more than 1 possible pictures, use more descriptions and change the value of r_ifi_picture at the

right time. The path name will be relative to the ifi parameter configdir which has default value:

<configdir default value>.

Example:

….

DESCRIPTIONS

 d_background “resources\\background.png”

 …..

ATTRIBUTES

 r_ifi_picture = d_background

….

4. Use attribute r_ifi_gx and r_ifi_gy with locations to denote the relative positions on the map.

Note: gx goes from left to right, gy goes top down (and not bottom up). gx and gy are integers.

5. Use attribute r_ifi_icons for icon pictures for objects. The icons will be displayed in the sidebar as

the player’s inventory and as the people the player has already met. Create a (local) description

with a text string that holds the path name to the icon and assign that description to r_ifi_icon. In

case there are more than 1 possible icons (e.g. with lamp on, icon with light beam), use more

descriptions and change the value of r_ifi_iconm at the right time. The path name will be relative

to the ifi parameter configdir which has default value: <configdir default value>.

6. For each location that must show on the map add the following line to the TRIGGERS-section:

"ifi_map" -> t_ifi_place

7. For each character that must show in the GUI’s people section, add the following line in the

TRIGGERS section:

"ifi_people" -> t_ifi_people

8. “ifi_map” and “ifi_people” have scope all_locs. In case you have locations or objects with a

t_default trigger, this trigger will fire every turn for these ifi actions (unless they are added in

step 6 or 7 of course). So, make sure to check for “ifi_map” and ”ifi_people” in your default

trigger if it must not fire.

Example:

if equal(%action, ifi_map) or equal(%action, ifi_people) then nomatch() endif

(c) 2016 – 2022 Marnix van den Bos 9

Compatibilty
With IFI added, there are now 3 versions of the XVAN interpreter: console, Glk and IFI. Although Glk

and IFI have some additional functions, it is not necessary to make special versions of your story for

Glk and IFI.

 the console interpreter will ignore the Glk and IFI functions in a compiled story file;

 the Glk interpreter will ignore the IFI functions;

 and the IFI interpreter will ignore the Glk functions.

Likewise, a story with only console functions can still be played in the Glk or IFI interpreter. It will just

not take advantage of the extra possibilities (and the map will be messy, because all locations will

have coordinates 0,0).

Where to get IFI Xvan
IFI XVAN is best downloaded from the Brahman repo that is maintained by Strandgames. It containes

the GUI and the XVAN backend, as well as instructions how to build the application.

Using the IFI Library in your story
The IFI Library is a single file called something like “IFI Library x-y.lib”.

The file must be placed in the same folder as your story file(s). In your story file, insert the .lib file

with the line:

 $insert ".\\IFI Library x-y.lib" or

 $insert “.//IFI Librray x-y.lib”

And please note that the IFI Library also requires the use of the XVAN Library.

https://gitlab.com/strandgames/brahman

